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Abstract

Background

Infections with multidrug resistant (MDR) bacteria in hospital settings have substantial impli-

cations in terms of clinical and economic outcomes. However, due to clinical and methodo-

logical heterogeneity, estimates about the attributable economic and clinical effects of

healthcare-associated infections (HAI) due to MDR microorganisms (MDR HAI) remain

unclear. The objective was to review and synthesize the evidence on the impact of MDR

HAI in adults on hospital costs, length of stay, and mortality at discharge.

Methods and findings

Literature searches were conducted in PubMed/MEDLINE, and Google Scholar databases

to select studies that evaluated the impact of MDR HAI on economic and clinical outcomes.

Eligible studies were conducted in adults, in order to ensure homogeneity of populations,

used propensity score matched cohorts or included explicit confounding control, and had

confirmed antibiotic susceptibility testing. Risk of bias was evaluated, and effects were mea-

sured with ratios of means (ROM) for cost and length of stay, and risk ratios (RR) for mortal-

ity. A systematic search was performed on 14th March 2019, re-run on the 10th of June 2019

and extended the 3rd of September 2019. Small effect sizes were assessed by examination

of funnel plots. Sixteen articles (6,122 patients with MDR HAI and 8,326 patients with non-

MDR HAI) were included in the systematic review of which 12 articles assessed cost, 19 arti-

cles length of stay, and 14 mortality. Compared to susceptible infections, MDR HAI were

associated with increased cost (ROM 1.33, 95%CI [1.15; 1.54]), prolonged length of stay

(ROM 1.27, 95%CI [1.18; 1.37]), and excess in-hospital mortality (RR 1.61, 95%CI [1.36;
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1.90]) in the random effects models. Risk of publication bias was only found to be significant

for mortality, and overall study quality good.

Conclusions

MDR HAI appears to be strongly associated with increases in direct cost, prolonged length

of stay and increased mortality. However, further comprehensive studies in this setting are

warranted.

Trial registration

PROSPERO (CRD42019126288).

Introduction

The growing prevalence of bacterial infections that cannot be adequately treated by existing

effective antimicrobial therapies poses a considerable threat to the effectiveness, efficiency of

healthcare systems[1–6], and is currently reaching societal consequences[7–9] limiting the

achievement of WHO’s Sustainable Development Goals[10,11].

Much work has been done on understanding and estimating the impact of antimicrobial

resistance (AMR) in various settings. A recent article[12] underlines that AMR is one of the

greatest challenges for public health and highlights the high impact of healthcare-associated

infections (HAIs) due to antimicrobial resistant bacteria in terms of number of cases, attribut-

able deaths, and disability-adjusted life-years. 700.000 deaths due to infections caused by

Multi-drug resistant (MDR) bacteria occur yearly worldwide and this number could increase

to 10 million in 2050[13] depending upon resistance patterns evolution and effective antibiotic

discovery. Estimated associated costs are estimated to be 3.8% of annual GDP (additional 1.2

trillion USD) and as a results, 28.3 million people are condemned to extreme poverty. “Three
out of four deaths from superbug infections could be averted by spending just USD 2 per person a
year on measures as simple as hand washing and more prudent prescription of antibiotics”[14].

With respect to AMR, the most commonly reported characterization is multidrug resis-

tance (MDR)[15–19], which occurs when a bacterial infection is resistant to treatment with

multiple appropriate antimicrobial drugs. MDR is currently characterized as non-susceptibil-

ity to at least one agent in three antimicrobial categories [20]. Associations between resistant

infections and a wide arrange of outcomes has been reported and their direct effects are mainly

driven by the ineffectiveness of available treatment of such infections. However, the relative

magnitude of effects remains unclear. Moreover, estimates of the iatrogenic burden of MDR in

hospital nosocomial infections could have been biased due to small sample sizes studies, inade-

quate research methodology and measurement error.

The objective of this study was to systematically review the literature and to provide a quan-

titative synthesis of the available evidence regarding the adjusted association between HAI due

to MDR bacteria and direct cost of care, extended length of stay and mortality in observational

studies with the highest degree of internal validity.

Materials and methods

This systematic review and meta-analysis adheres to the PRISMA recommendations[21]. Fur-

thermore, specific recommendations for systematic review and metanalysis of observational
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studies were followed[22]. This metanalysis was registered with PROSPERO

(CRD42019126288).

Study eligibility criteria

Studies met eligibility criteria if they were case-control or cohort studies conducted in adults

evaluating the effects of MDR HAI vs non-MDR HAI. We excluded non-adjusted studies due

to the excess risk of bias within the observational setting of this analysis. Two consecutive

rounds of eligibility criteria were applied to ensure comparability across studies.

First, each included study must: i) have been published between 1st January 1980 - 3rd Sep-

tember 2019 in English, ii) attempt to estimate the direct impact of MDR (MDR was defined

in accordance to the current available interim expert proposal[20]) HAIs on either clinical or

economic outcomes using original data with a case-control or cohort study design, and, iii)

attempt to control for confounding either through matching[23], inclusion of sensible covari-

ates in a multivariate analysis, or both[24].

A second round of eligibility criteria was applied upon examination of the full text of each

study for inclusion in the systematic review. In particular, each study must: i) have a control

group that differs in the antibiotic susceptibility pattern of the microorganism causing infec-

tions (confirmed by susceptibility testing), ii) present comprehensive descriptive statistics

(gender composition, age, microorganism distribution) of the case and control groups with

estimated variance parameters of the dependent variables, iii) examine at least one of the fol-

lowing outcomes: mortality at discharge, direct hospital cost/charges or length of stay, and, iv)

in case of inclusion of community-acquired infection (CAI) cases, results had to be reported

separately for CAI and HAI cases while fulfilling the previous inclusion conditions.

Identification and selection of studies

A systematic search was performed on 14th March 2019,re-run on the 10th of June 2019 and

extended the 3rd of September 2019. We searched PubMed/MEDLINE and Google Scholar

databases for eligible studies. Two authors (MSB and MK) performed the title screening to

find retrospective or prospective studies reporting an adjusted association of MDR HAI with

mortality, length of stay and/or direct cost of care. A specific-search strategy was tailored to

each database by using MeSH/Map terms and is presented as supplementary S3 Table. The

degree of agreement across the two reviewers for inclusion assessment was assessed using

kappa statistics.

Additional papers were also collected through expert consultation, and references of indi-

vidual papers and previous meta-analyses. The search flow chart is presented in Fig 1.

Data extraction and risk of bias assessment

Two predefined tables were used to summarize information from the final eligible studies. In

the first one, for each paper, we recorded the basic results about the estimated impact of MDR

HAI on each clinical and economic outcome (adjusted difference, outcomes mean, and, sam-

ple sizes). In the second one, we recorded the descriptive statistics provided on the study sam-

ples used for the final analysis. Specific Items were extracted for each study: clinical setting,

study design (prospective or retrospective), origin of infection (hospital and/or community),

infection type. These data extraction procedures were performed by two authors, and disagree-

ment was resolved by discussion with a third author (CC). Three primary outcomes were eval-

uated: i) direct hospitalization cost or hospital charges, ii) length of stay, and iii) mortality at

discharge.
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Direct hospitalization cost was defined as the total direct cost from the hospital perspective

of the inpatient admission, when unavailable, hospital charges were used as a proxy. Length of

stay was defined as the admission length of stay following infection up to discharge. Mortality

was defined as patient death at the time of discharge.

Various methodologies are regularly employed to control for confounding and to approxi-

mate unbiased, causal estimates. In order to assess the risk of bias per study we used the New-

castle-Ottawa Scale designed for assessing the quality of non-randomized studies in a meta-

analysis[25–27]. Publication bias was assessed with funnel plots.

Data synthesis

All statistical analyses were performed in R, version 3.5.1 (2018-07-02)[28] with the meta pack-

age[29]. Difference in outcomes was expressed as ratio of means (ROM) for cost and length of

stay outcomes, and risk ratio (RR) for mortality at discharge. The rationale for expressing out-

comes as ROM, was to eliminate between-studies variability between the reporting of direct

hospital cost or charges, both random-effects (RE) and fixed-effects (FE) models were fitted

for statistical pooling of the data. Given the clinical heterogeneity present in the analysis, a ran-

dom effects model with the Hartung-Knapp-Sidik-Jonkman method was chosen as the pri-

mary estimation method[30]. The weighting of the results was performed in relation to the

sample size of each study. Given the low likelihood of obtaining 10 or more studies by covari-

ate, meta-regression was not performed[31].

Statistical heterogeneity for each pooled outcome was examined with the I2 statistic[32] and

Q-test[33]. Significance level was established at the 5% level, and all results are expressed with

Fig 1. PRISMA flow diagram.

https://doi.org/10.1371/journal.pone.0227139.g001
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95% confidence intervals (CI). Prediction interval was also estimated in the pooling[34]. Risk

of publication bias was visually examined through funnel plots and assessed with a linear

regression test of funnel plot asymmetry[35].

Results

Fig 1 depicts a flow diagram of the search, following PRISMA guidelines, screening and eligi-

bility procedures and the loss of studies that occurred throughout. Table 1 describes the studies

that were included after the second round of eligibility criteria applied to the full-text studies.

Out of 733 selected studies, 658 (93.5%) were excluded after screening of the abstract for the

first round of inclusion criteria (kappa = 0.73). A total of 48 full-text manuscripts were assessed

for the second round of inclusion criteria, with 28 (58.3%) being excluded for not fulfilling the

criteria (kappa = 0.96). A total of 20 studies were included in the review, with 14,448 patients

included[36–55]. Out of the 20 studies, 19 presented in hospital length of stay, 14 presented

mortality data and 12 cost outcomes.

Most studies were single center (k = 13). Four studies were prospective cohort studies,

while the rest (k = 16) were retrospective. Only four studies were conducted in the intensive

care units (ICU), while the remaining studies were conducted in other wards, with some

including both community-acquired infections and HAI reported separately (k = 6). In terms

of type of infection, most studies included any HAI (k = 11), while the rest, pneumonia (k = 6),

bloodstream infections (BSI, k = 2), surgical site infections (SSI, k = 2), and urinary tract infec-

tions (UTI, k = 1).

Table 1. Summary characteristics of selected studies.

Study ID Authors Year Clinical Setting Study Design Origin of Infection Infection Types Country of study Mean Age Sample size (N)

1 R. K. Pelz et al. 2002 Single Prospective H Any US 56 34

2 L. F. Barat et al. 2017 Single Prospective ICU PN Spain 66 64

3 B. J. Kopp et al. 2004 Single Retrospective H/C Any US 57 72

4 R. Tedja et al. 2014 Single Retrospective H PN US 62 107

5 P. O. Depuydt 2008 Multicenter Retrospective H/C Any Belgium 59 192

6 I. M. Loeches et al. 2014 Multicenter Prospective ICU PN Spain 62 171

7 P. D. Mauldin et al. 2010 Single Retrospective H Any US N/A� 662

8 J. J. Engemann et al. 2003 Single Prospective H SSI USΩ 59 286

9 E. E. Magira et al. 2017 Single Retrospective ICU Any US 72 300

10 Y. Carmeli et al. 1999 Single Retrospective H/C Any USΩ 63 489

11 M. Riu et al. 2016 Single Retrospective H BSI Spain 66 575

12 R. R. Roberts et al. 2009 Single Retrospective H/C Any US 54 338

13 S.T. Micek et al. 2015 Multicenter Retrospective H PN EU 56 740

14 Z. Chen et al. 2018 Single Retrospective H PN China 70 540

15 A. Resch et al. 2009 Multicenter Retrospective H/C Any (MRSA) Germany 68 2,052

16 M. J. Neidell et al. 2012 Multicenter Retrospective H/C BSI, UTI, PN USΩ 64 1,775

17 L. Puchter et al. 2018 Single Retrospective H/ICU Any Germany 54 84

18 R. Nelson et al. 2018 Multicenter Retrospective H Any US VA 70 405

19 E. Cowie et al. 2005 Single Retrospective H SSI Canada 68 37

20 Bonnet et al. 2019 Multicenter Retrospective ICU Any France 61 5,525

Abbreviations: H: Hospital, C: community, ICU: Intensive Care Unit, SSI: Surgical Site Infection, BSI: Bloodstream Infection, MRSA: Methicillin-Resistant

Staphylococcus Aureus, UTI: Urinary Tract Infection, PN: Pneumonia.

�Study presents discretized age.
ΩHospital charges instead of cost reported.

https://doi.org/10.1371/journal.pone.0227139.t001
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Risk of bias

Risk of bias was rated according to the Newcastle-Ottawa scale and is summarized in S1 Table.

The majority of studies were rated as good quality according to the AHQR[26], (k = 9). Six

studies were classified as fair and five of poor quality. Case definition was adequately portrayed

in most studies (k = 14), selection of controls (k = 17), definition of controls (k = 12), and rep-

resentativeness of the sample (k = 11). Comparability of cases and controls on the was rated at

least with one point (�) in all studies (k = 20). Ascertainment of exposure was adequate in

almost all studies (k = 18). Overall, the risk of bias in included studies was found to be low.

Effects of MDR-HAI

Cost. Excess attributable cost of MDR HAI was found to be statistically significant in the

RE pooling (ROM 1.33 95%CI [1.15; 1.54]). Fig 2 presents the results of the pooling. FE pool-

ing displayed similar results (ROM 1.35 95%CI [1.26; 1.44]), and the prediction interval ranged

from 0.81 to 2.20. Significant heterogeneity across studies was found to be present with a Q-

statistic value of 44.09 (p<0.01) and an I2 statistic of 75%. There was no evidence of publica-

tion bias in the 11 studies that reported cost outcomes with the linear regression test of funnel

plot asymmetry (p = 0.7715).

Length of stay. Prolonged length of stay of MDR HAI was found to be also significant in

the RE pooling (ROM 1.27 95%CI [1.17; 1.39]). FE model yielded similar results (ROM 1.21

[1.17; 1.24]). The prediction interval was found to be narrower than for cost with values rang-

ing from 0.97 to 1.65. Fig 3 presents the results. Heterogeneity was also found to be present, Q-

statistic value of 59.38 (p<0.01) and I2 value of 69%. We were not able to reject the null

hypothesis of symmetry in the funnel plot (p = 0.1258).

Fig 2. Cost of care ratio of means (ROM) estimates.

https://doi.org/10.1371/journal.pone.0227139.g002
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Mortality at discharge. Excess mortality results from the 14 eligible studies are displayed

in Fig 4. RE pooling shows a significant increase (RR 1.61 95%CI [1.36; 1.90]). FE pooled esti-

mates were much lower than RE (RR 1.27 95%CI [1.21; 1.33]), while the prediction interval

ranges from 0.94 to 2.74. Significant heterogeneity across studies was found, Q-statistic 48.49

(p<0.01) and I2 statistic of 73%.

Fig 5 displays the funnel plots of all three outcomes. Symmetry was confirmed for cost and

length of stay outcomes, while for mortality a significant asymmetry towards increased RR was

noted (p<0.01), highlighting a high risk of publication bias in this particular outcome.

Discussion

HAIs can occur in almost every step of hospital care and are highly heterogeneous in their

cause and clinical presentation. It follows that a prominent feature of the literature on the eco-

nomic and clinical impact of MDR is a large degree of heterogeneity across study settings.

Here we reviewed and synthesized the available evidence presented with the highest observa-

tional methodological standards due to well understood confounding problems[56]. We lim-

ited the analysis to cohort and case-control studies in order to alleviate selection bias,

Fig 3. Length of stay ratio of means (ROM) estimates.

https://doi.org/10.1371/journal.pone.0227139.g003

Impact of multi-drug resistant bacterial healthcare acquired infections

PLOS ONE | https://doi.org/10.1371/journal.pone.0227139 January 10, 2020 7 / 14

https://doi.org/10.1371/journal.pone.0227139.g003
https://doi.org/10.1371/journal.pone.0227139


www.manaraa.com

excluding a significant portion of studies, and yielding a small number of studies. Overall, the

quality of studies was good, we did, however, found indication of publication bias in mortality

estimates.

We found consistent patterns that indicate increased mortality and resource utilization in

terms of length of stay and direct cost which are associated with MDR HAI vs those associated

with susceptible microorganism acquired infections. We report 1.27, 1.33 and 1.62-fold

increases in excess length of stay, cost and mortality at discharge risk associated with MDR

respectively. The effect size of length and cost does not vary significantly depending upon the

estimation method. However, for mortality, there is a two-fold difference between RE (RR

1.62) and FE (RR 1.27). This difference highlights the potential unobserved heterogeneity

across studies in terms of patient prognosis and publication bias. The interrelation of these

three outcomes plays a crucial role in the interpretation of the results. Higher inpatient mortal-

ity could, theoretically, even reduce inpatient stay and direct hospital cost. However, our esti-

mates point to an overall increase around 30% for resource utilization.

As is the case with observational studies where the exposure is not randomized, there is risk

of bias in estimating the impact of exposure. Only 4 out of 20 eligible studies presented a pro-

spective cohort study design that could mitigate selection bias in the estimates. Remaining stud-

ies presented retrospective designs and attempted to overcome other sources of bias through a

process matching and/or multivariate modelling with appropriate selection of control variables.

The range of costs presented varies considerably according to the setting in which MDR

HAIs were studied, ranging from average increases of 3,000 USD to 40,000 USD[36,37]. The

reported mechanisms of cost impact also vary across settings. We tried to address this

Fig 4. Mortality at discharge relative risk estimates.

https://doi.org/10.1371/journal.pone.0227139.g004
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Fig 5. Funnel plots.

https://doi.org/10.1371/journal.pone.0227139.g005
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between-studies heterogeneity by using a ROM metric as outcome, rendering interpretable

estimates regardless of institutional and national setting[57]. The most consistent mechanism

across studies refers to secondary antibiotic treatment, followed by prolonged length of stay

and increased labor costs. Furthermore, the MDR cost impact has an average incremental esti-

mate of a 1.33-fold magnitude, highlighting the relative magnitude of the problem.

Further well-designed studies, that use either a consistent control, matching or time-to-

infection control, like Nelson et al. (2018) are needed in order to best approximate unbiased

and consistent estimates. Their clinical and economic implications are crucial for both the

development of novel antibiotics alongside their potential cost-effectiveness estimates.

Limitations

There are several limitations to this systematic review. There is a general lack of comparability

across studies examining the impact of MDR HAI on clinical and economic outcomes, namely

in setting, MDR bacteria and infections studied, data presentation, and methodology. Given

the potential lack of exogenous variation in the allocation of resistant bacterial infections, con-

founding may be a problem, which would require elaborate and uniform covariate choice

across participating studies so that a comprehensive set of covariates could be used in a multi-

variate pooled analysis. No restrictions regarding time to HAI were applied for its definition.

However, most studies used a 48H window since admission.

Furthermore, there are subtle differences in the definitions of primary endpoints utilized

across the eligible studies and MDR definitions, which makes comparison less reliable. For

example, one may formulate cost from either the patient or hospital perspective, which may be

an estimate of cost rather than the true figure, which poses measurement error. Lastly, a com-

plex grouping of studies was chosen for this meta-analysis. We considered all bacteria types

presenting with resistant and many types of infections. Comparisons between these different

settings are made more difficult by the inconsistencies across studies. We were also unable to

perform reliable subgroup analyses due to the small sample size of eligible studies in each pre-

defined category.

Fig 6. Geographical distribution of included studies.

https://doi.org/10.1371/journal.pone.0227139.g006
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Finally, our search strategy did not include studies published in non-English languages,

potentially yielding under representation of geographic areas where AMR presents an even

higher burden. Fig 6 presents the geographical distribution of included studies, mainly in North

America and Europe. Further research estimating the pooled burden in non-English speaking

countries is warranted in order to provide accurate estimates of the magnitude of the burden.

Conclusions

MDR HAI appears to be strongly associated with increased resource utilization and health out-

comes, as assessed by direct provider cost and/or charges, prolonged length of stay and mortal-

ity of patients in a wide array of healthcare settings. However, more research is required to

fully elucidate the relationship between MDR and economic and clinical outcomes and its

dependence on various settings, routes of infection and pathogens involved. Further applied

research should focus on the development of prospective registries with standardized suscepti-

bility testing and longer follow-up outside of hospital settings to better understand the actual

societal burden of such a rising phenomenon.
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